ProPlex HT-96 Screen
ProPlex is formulated for the crystallization of *Protein complexes*.

MD1-42 is presented as a 96 x 1 mL condition targeted sparse matrix screen.

Features of ProPlex HT-96:
- Helps maintain protein-protein interactions
- Reduces solubility of complex.
- Medium and High MW PEGs and lower concentrations specifically for protein complexes.
- pH range from 4.0 – 8.5 promote stabilization of complexes.

Introduction

Crystallization of protein complexes

Successful crystallization of protein-protein complexes requires conditions to satisfy two independent criteria: solubility of the complex and stability of the complex. Protein-protein interactions are often weak or transient and their satisfaction precludes a number of reagent zones, thus constricting boundaries around which conditions for crystallization of the complex may be found. Compared to comprehensive crystallization databases containing all proteins, fewer complexes crystallize at extreme pH values due to the destabilisation of protein-protein interactions. Protein complexes were also found to crystallize at lower concentrations of precipitant than is generally observed. As a consequence, traditional sparse matrix screens contain many conditions which fall outside these boundaries and therefore can never crystallize intact protein complexes.

Types of precipitants used for protein-protein complex crystallization.

Typical PEG Molecular Weights used in protein-protein complex crystallization.

Typical pH conditions used for protein-protein complex crystallization.
The protein-complex crystallization database
The protein-complex crystallization database (PCCD) was established by Radaev et al (2006). All published protein-protein complex structures were extracted from the PDB, and multi-subunit proteins, such as free antibodies, were excluded. The resulting PCCD contained 659 unique, dissociable protein-protein complexes. They included 155 enzyme-inhibitor complexes, 121 receptor-ligand complexes, 117 cellular protein complexes, 74 antibody-antigen complexes, 71 signal transduction complexes, 52 large, multi-protein complexes such as ribosomes, and 69 other types of protein-protein complexes. Analysis of crystallization conditions in the PCCD enabled the definition of crystallization boundaries specific to protein complexes.

The Development of ProPlex
This Protein Complex Screen is a sparse matrix screen containing conditions obtained by cluster-analysis of data from the PCCD. The number of conditions containing each precipitant type is proportional to the number of observed crystallizations in the PCCD: 66 PEG-based, 24 salt-based and 6 organics-based.

Conditions included, contain precipitants at concentrations representative of those within the crystallization space identified from the PCCD. These are on average, lower than the concentrations found in general sparse matrix screens.

Screening for crystallization of protein complexes
Analysis of the PCCD revealed that 96% of the crystallizations used the vapour diffusion method. Crystallization experiments should be set-up in parallel at 4 °C and 23 °C, since the strength of interactions at protein-protein interfaces are temperature dependent. Most protein complexes were crystallized at a concentration between 5 and 20 mg/ml, with 10 mg/ml being the most successful starting concentration.

Careful biophysical characterisation of the sample is recommended in order to confirm the nature and stability of the complex.

Formulation Notes
ProPlex reagents are formulated using ultrapure water (>18.0 MΩ) and are sterile-filtered using 0.22 μm filters. No preservatives are added. Final pH may vary from that specified on the datasheet.

Contact Us
Molecular Dimensions will be happy to discuss the precise formulation of individual reagents.

Individual reagents and stock solutions for optimization are available from Molecular Dimensions.

Enquiries regarding ProPlex formulation, interpretation of results or optimization strategies are welcome. Please e-mail, fax or phone your query to Molecular Dimensions.

Contact and product details can be found at www.moleculardimensions.com

References
<table>
<thead>
<tr>
<th>Well #</th>
<th>Concentration</th>
<th>Buffer</th>
<th>pH</th>
<th>Precipitant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.1 M Tris</td>
<td>8.0</td>
<td>25 % v/v</td>
<td>PEG 350 MME</td>
</tr>
<tr>
<td>A2</td>
<td>0.1 M Calcium acetate hydrate</td>
<td>6.0</td>
<td>15 % v/v</td>
<td>PEG 400</td>
</tr>
<tr>
<td>A3</td>
<td>0.1 M Lithium chloride</td>
<td>7.5</td>
<td>20 % v/v</td>
<td>PEG 400</td>
</tr>
<tr>
<td>A4</td>
<td>0.1 M Tris</td>
<td>8.0</td>
<td>25 % v/v</td>
<td>PEG 400</td>
</tr>
<tr>
<td>A5</td>
<td>0.1 M MES</td>
<td>6.5</td>
<td>15 % v/v</td>
<td>PEG 500 MME</td>
</tr>
<tr>
<td>A6</td>
<td>0.1 M Sodium chloride</td>
<td>6.5</td>
<td>25 % w/v</td>
<td>PEG 1000</td>
</tr>
<tr>
<td>A7</td>
<td>0.1 M Ammonium sulfate</td>
<td>7.5</td>
<td>20 % w/v</td>
<td>PEG 1500</td>
</tr>
<tr>
<td>A8</td>
<td>0.1 M Ammonium chloride</td>
<td>5.5</td>
<td>10 % w/v</td>
<td>PEG 2000 MME</td>
</tr>
<tr>
<td>A9</td>
<td>0.1 M Sodium chloride</td>
<td>6.0</td>
<td>20 % w/v</td>
<td>PEG 2000 MME</td>
</tr>
<tr>
<td>A10</td>
<td>0.1 M Potassium chloride</td>
<td>8.0</td>
<td>15 % w/v</td>
<td>PEG 2000 MME</td>
</tr>
<tr>
<td>A11</td>
<td>0.1 M Sodium HEPES</td>
<td>7.5</td>
<td>25 % w/v</td>
<td>PEG 2000 MME</td>
</tr>
<tr>
<td>A12</td>
<td>0.2 M Sodium acetate trihydrate</td>
<td>5.5</td>
<td>5 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B1</td>
<td>0.1 M Lithium sulfate</td>
<td>7.5</td>
<td>5 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B2</td>
<td>0.1 M Calcium acetate hydrate</td>
<td>4.5</td>
<td>10 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B3</td>
<td>0.1 M Sodium acetate trihydrate</td>
<td>5.5</td>
<td>10 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B4</td>
<td>0.1 M Sodium chloride</td>
<td>6.5</td>
<td>10 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B5</td>
<td>0.1 M Magnesium chloride hexahydrate</td>
<td>7.5</td>
<td>10 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B6</td>
<td>0.1 M Sodium HEPES</td>
<td>7.0</td>
<td>10 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B7</td>
<td>0.2 M Ammonium acetate</td>
<td>4.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B8</td>
<td>0.1 M Magnesium chloride hexahydrate</td>
<td>5.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B9</td>
<td>0.1 M Sodium cacodylate</td>
<td>6.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B10</td>
<td>0.15 M Ammonium sulfate</td>
<td>6.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B11</td>
<td>0.1 M Sodium HEPES</td>
<td>7.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>B12</td>
<td>0.1 M Magnesium chloride hexahydrate</td>
<td>7.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C1</td>
<td>0.15 M Ammonium sulfate</td>
<td>8.0</td>
<td>15 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C2</td>
<td>0.1 M Sodium citrate</td>
<td>4.5</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C3</td>
<td>0.2 M Ammonium acetate</td>
<td>5.0</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C4</td>
<td>0.2 M Lithium sulfate</td>
<td>6.0</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C5</td>
<td>0.1 M Tris</td>
<td>8.0</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C6</td>
<td>0.15 M Ammonium sulfate</td>
<td>7.0</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C7</td>
<td>0.1 M Sodium citrate</td>
<td>5.6</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C8</td>
<td>0.2 M Sodium chloride</td>
<td>8.0</td>
<td>20 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C9</td>
<td>0.1 M Sodium cacodylate</td>
<td>5.5</td>
<td>25 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C10</td>
<td>0.15 M Ammonium sulfate</td>
<td>5.5</td>
<td>25 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C11</td>
<td>0.1 M Sodium cacodylate</td>
<td>6.5</td>
<td>25 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>C12</td>
<td>0.2 M Potassium iodide</td>
<td>6.5</td>
<td>25 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>D1</td>
<td>0.2 M Sodium chloride</td>
<td>7.5</td>
<td>25 % w/v</td>
<td>PEG 4000</td>
</tr>
<tr>
<td>D2</td>
<td>0.1 M MES</td>
<td>6.5</td>
<td>10 % w/v</td>
<td>PEG 500 MME</td>
</tr>
<tr>
<td>D3</td>
<td>0.1 M Potassium chloride</td>
<td>7.0</td>
<td>15 % w/v</td>
<td>PEG 5000 MME</td>
</tr>
<tr>
<td>D4</td>
<td>0.2 M Ammonium sulfate</td>
<td>7.5</td>
<td>20 % w/v</td>
<td>PEG 5000 MME</td>
</tr>
<tr>
<td>D5</td>
<td>0.1 M Magnesium chloride hexahydrate</td>
<td>6.0</td>
<td>8 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D6</td>
<td>0.15 M Sodium chloride</td>
<td>8.0</td>
<td>8 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D7</td>
<td>0.1 M Sodium citrate</td>
<td>5.5</td>
<td>15 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D8</td>
<td>0.1 M Magnesium acetate tetrahydrate</td>
<td>6.5</td>
<td>15 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D9</td>
<td>0.1 M MES</td>
<td>6.5</td>
<td>15 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D10</td>
<td>0.1 M Potassium chloride</td>
<td>7.5</td>
<td>15 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D11</td>
<td>0.1 M Tris</td>
<td>8.5</td>
<td>15 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>D12</td>
<td>0.1 M Tris</td>
<td>8.5</td>
<td>20 % w/v</td>
<td>PEG 6000</td>
</tr>
<tr>
<td>Well #</td>
<td>Conc.</td>
<td>Salt</td>
<td>Conc.</td>
<td>Buffer</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>E1</td>
<td>0.1 M</td>
<td>Magnesium acetate tetrahydrate</td>
<td>0.1 M</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>E2</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
<td>0.1 M</td>
<td>Sodium cacodylate</td>
</tr>
<tr>
<td>E3</td>
<td>0.2 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>E4</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
<td>0.1 M</td>
<td>Tris</td>
</tr>
<tr>
<td>E5</td>
<td>0.1 M</td>
<td>Tris</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>E6</td>
<td>0.1 M</td>
<td>Calcium acetate hydrate</td>
<td>0.1 M</td>
<td>Sodium cacodylate</td>
</tr>
<tr>
<td>E7</td>
<td>0.1 M</td>
<td>Sodium phosphate</td>
<td>0.1 M</td>
<td>MOPS</td>
</tr>
<tr>
<td>E8</td>
<td>0.1 M</td>
<td>Magnesium acetate tetrahydrate</td>
<td>0.1 M</td>
<td>Sodium phosphate</td>
</tr>
<tr>
<td>E9</td>
<td>0.2 M</td>
<td>Sodium citrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>E10</td>
<td>0.2 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>E11</td>
<td>0.2 M</td>
<td>Sodium citrate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>E12</td>
<td>0.2 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>F1</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>F2</td>
<td>0.2 M</td>
<td>Lithium chloride</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>F3</td>
<td>0.1 M</td>
<td>Magnesium acetate tetrahydrate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>F4</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>F5</td>
<td>0.1 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>F6</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>F7</td>
<td>0.5 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>MES</td>
</tr>
<tr>
<td>F8</td>
<td>1.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>F9</td>
<td>1.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>MES</td>
</tr>
<tr>
<td>F10</td>
<td>1.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Tris</td>
</tr>
<tr>
<td>F11</td>
<td>1.5 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>F12</td>
<td>1.5 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G1</td>
<td>1.5 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G2</td>
<td>2.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G3</td>
<td>2.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G4</td>
<td>2.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G5</td>
<td>1.0 M</td>
<td>Ammonium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G6</td>
<td>2.0 M</td>
<td>Potassium chloride</td>
<td>0.1 M</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>G7</td>
<td>3.0 M</td>
<td>Sodium formate</td>
<td>0.1 M</td>
<td>Tris</td>
</tr>
<tr>
<td>G8</td>
<td>0.8 M</td>
<td>Sodium/potassium phosphate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>G9</td>
<td>1.3 M</td>
<td>Sodium/potassium phosphate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>G10</td>
<td>1.6 M</td>
<td>Sodium/potassium phosphate</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>G11</td>
<td>1.0 M</td>
<td>Sodium acetate trihydrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>G12</td>
<td>1.0 M</td>
<td>Sodium citrate trihydrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H1</td>
<td>2.0 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Sodium citrate</td>
</tr>
<tr>
<td>H2</td>
<td>1.0 M</td>
<td>Lithium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H3</td>
<td>1.6 M</td>
<td>Lithium sulfate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H4</td>
<td>1.4 M</td>
<td>Sodium malonate dibasic monohydrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H5</td>
<td>1.2 M</td>
<td>Potassium sodium tartrate tetrahydrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H6</td>
<td>1.6 M</td>
<td>Magnesium sulfate heptahydrate</td>
<td>0.1 M</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>H7</td>
<td>0.1 M</td>
<td>Sodium acetate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H8</td>
<td>0.05 M</td>
<td>Calcium acetate hydrate</td>
<td>0.1 M</td>
<td>Sodium cacodylate</td>
</tr>
<tr>
<td>H9</td>
<td>0.1 M</td>
<td>Imidazole</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H10</td>
<td>0.05 M</td>
<td>Magnesium chloride hexahydrate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H11</td>
<td>0.2 M</td>
<td>Ammonium acetate</td>
<td>0.1 M</td>
<td>Sodium HEPES</td>
</tr>
<tr>
<td>H12</td>
<td>0.1 M</td>
<td>Sodium chloride</td>
<td>0.1 M</td>
<td>Tris</td>
</tr>
</tbody>
</table>
Manufacturer’s safety data sheets are available from our website or by scanning the QR code here:

Ordering details:

<table>
<thead>
<tr>
<th>Catalogue Description</th>
<th>Catalogue Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPlex (96 x 10 mL kit)</td>
<td>MD1-38</td>
</tr>
<tr>
<td>ProPlex HT-96 (96 x 1 mL)</td>
<td>MD1-42</td>
</tr>
</tbody>
</table>

Eco Screen versions

<table>
<thead>
<tr>
<th>Catalogue Description</th>
<th>Catalogue Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPlex (96 x 10 mL kit)</td>
<td>MD1-38-ECO</td>
</tr>
<tr>
<td>ProPlex HT-96 (96 x 1 mL)</td>
<td>MD1-42-ECO</td>
</tr>
</tbody>
</table>

Single Reagents

<table>
<thead>
<tr>
<th>Catalogue Description</th>
<th>Catalogue Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProPlex (100 mL)</td>
<td>MDSR-38 - tube number</td>
</tr>
<tr>
<td>ProPlex HT-96 (100 mL)</td>
<td>MDSR-42 - well number</td>
</tr>
</tbody>
</table>

For ProPlex ™ stock reagents visit our Optimization page on our website.